## Chem 1C Midterm 1

Practice Test

Credit will only be given for answers on this sheet. Units must be included in your answers and points will be taken off for incorrect or missing units. No partial credit will be awarded. Calculators are allowed. Cell phones may not be used as calculators.

| Name: | Perm Number |
| :--- | :--- |
|  |  |

Make sure writing is dark and large enough to be picked up by a scanner. Failure to do this results in the loss of 5 points on the exam.

If you are sitting next to someone with the same version of the test you both will lose 5 points.

| Fundamentals |  |  |  |
| :---: | :---: | :---: | :---: |
| Question <br> (Points) | Answer |  |  |
| $\begin{gathered} \mathbf{1} \\ (6 \mathrm{pts}) \\ 2,2,2 \end{gathered}$ | $\bigcirc \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ | $\mathrm{O} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ | - $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ |
|  | - $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ | $\bigcirc \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ | $\bigcirc \mathrm{H}_{2} \mathrm{O}$ |
|  | $\bigcirc \mathrm{H}_{2} \mathrm{O} \quad \mathrm{O}_{2}$ | - He | $\bigcirc \mathrm{CO}_{2}$ |
| $\begin{gathered} \mathbf{2} \\ (6 \mathrm{pts}) \end{gathered}$ | 0.0076 s |  |  |
| $\begin{gathered} \mathbf{3} \\ (6 \mathrm{pts}) \end{gathered}$ | $94^{\circ} \mathrm{C}$ |  |  |
| $\begin{gathered} \mathbf{4} \\ (6 \mathrm{pts}) \\ 2,2,2 \end{gathered}$ | - London | - Dipole-Dipole | - H-Boning |
|  | - London | - Dipole-Dipole | O H-Boning |
|  | - London | O Dipole-Dipole | O H-Boning |
| $\begin{gathered} \mathbf{5} \\ (6 \mathrm{pts}) \\ 2,2,2 \end{gathered}$ | $2 \mathrm{NO}_{2} \mathrm{Cl} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{Cl}_{2}$ |  |  |
|  | $\mathrm{N}_{2} \mathrm{O}, \mathrm{ClO}_{2}, \mathrm{NOCl}$, and ClO |  |  |
|  | None |  |  |
| $\begin{gathered} \mathbf{6} \\ (9 \text { pts }) \\ 3,3,3 \end{gathered}$ | F | H | B |



| Challenge Problems |  |
| :---: | :--- |
| Question <br> (Points) | Answer |
| $\mathbf{1 3}$ <br> $(14 \mathrm{pts})$ <br> 8,6 | Rate $=\mathrm{k}[\mathrm{A}]^{1.5}[\mathrm{~B}]$ |
|  | $120 \frac{\text { mol }^{0.3}}{\mathrm{~L}^{0.3} \cdot \mathrm{~s}}$ |
|  |  |
| $(10$ pts $)$ |  | Silver $\quad$|  |
| :--- |

## Fundamental Questions

1a) $2 p t s$

1b) $2 p t s$

1c) 2 pts
2) 6 pts

Which has the greatest viscosity?
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \quad \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Which has the highest vapor pressure at 1 atm and $25^{\circ} \mathrm{C}$ ?
$\mathrm{CH}_{3} \mathrm{OCH}_{3}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
$\mathrm{H}_{2} \mathrm{O}$

Which has the lowest freezing point?
$\begin{array}{llll}\mathrm{H}_{2} \mathrm{O} & \mathrm{O}_{2} & \mathrm{He} & \mathrm{CO}_{2}\end{array}$

What is the $2^{\text {nd }}$ half-life for a second order reaction with $\mathrm{k}=22 \frac{L}{\text { mols }}$ and an initial concentration of 12 M .
3) 6 pts What is the boiling point of water in Denver if atmospheric pressure is 0.82 atm , and $\Delta \mathrm{H}_{\mathrm{vap}}=40.7 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ ?

4a) $2 p t s$

4b) $2 p t s$

4c) 2 pts

5a) $2 p t s$

5b) 2 pts

5c) $2 p t s$

6a) $3 p t s$

6b) $3 p t s$
If a sample of pure $X$ is a gas, in which region must the temperature and pressure be? $\qquad$

6b) 3 pts Which line must the temperature and pressure have crossed if a solid sample of $X$ is observed to melt? $\qquad$

## Multiple Choice

7) 6 pts Which statement regarding water is true
a. Liquid water is less dense than solid water
b. Only covalent bonds are broken when ice melts.
c. Hydrogen bonds are stronger than covalent bonds.
d. Energy must be given off in order to break down the crystalline lattice of ice to a liquid.
e. All of these statements are false.
8) 6 pts For the reaction $\mathrm{aA} \rightarrow$ products, select the reaction order(s) that best fit(s) the observations that a plot of $[A]^{2}$ vs $t$ gives a straight line.
a. First order in A
b. Second order in A
c. Zero order in A
d. All of these
e. None of these
9) 6 pts The normal boiling point of the substance with the phase diagram shown below is $\qquad$ ${ }^{\circ} \mathrm{C}$.

a. 50
b. 10
c. 15
d. 40
e. None of the above
10) 6 pts The reaction profile for the mechanism

$$
\mathrm{NO}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g})+\mathrm{F}(\mathrm{~g}) \quad \text { slow }
$$

$$
\mathrm{F}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2} \mathrm{~F}(\mathrm{~g}) \quad \text { fast }
$$

Shows
a. two maxima, the second maximum being the higher
b. one maximum for the second step.
c. two maxima, both the same height
d. two maxima, the first maximum being the higher.
11) 6 pts All of the following statements with respect to the effect of a catalyst on a reaction are true except
a. A catalyst speeds up a reaction by providing an alternative pathway for the reaction.
b. When a reaction is catalyzed, both forward and reverse reaction are accelerated.
c. When a catalyst speeds up a reaction, the rate law stays the same.
d. A catalyst provides a lower activation energy for the reaction.
e. A catalyst has no effect of the equilibrium composition of the reaction.
12) 7 pts The rate law for a reaction is found to be Rate $=k[A]^{2}[B]$. Which of the following mechanisms gives this rate law?
I. $\quad \mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{E}$ (fast equilibrium)
$E+B \rightarrow C+D$ (slow)
II. $\quad A+B \rightleftharpoons E$ (fast equilibrium)
$E+A \rightarrow C+D$ (slow)
III. $A+A \rightarrow E$ (slow)
$\mathrm{E}+\mathrm{B} \rightleftharpoons \mathrm{C}+\mathrm{D}$ (fast equilibrium)
a. II only
b. III only
c. I only
d. Two of these
e. None of the these

## Challenge Problems

13a) 8 pts The following data were obtained for the reaction $\mathrm{A}+\mathrm{B} \rightarrow$ products

| $[\mathrm{A}]_{\mathrm{O}}(\mathrm{M})$ | $[\mathrm{B}]_{\mathrm{O}}(\mathrm{M})$ | Initial Rate $\left(\frac{\mathrm{mol}}{\mathrm{L} \cdot \mathrm{s}}\right)$ |
| :---: | :---: | :---: |
| 0.0500 | 0.100 | 6.0 |
| 0.100 | 0.100 | 17 |
| 0.100 | 0.200 | 34 |

What is the rate law?

13b) 6 pts If the rate law was determined to be rate $=k[A]^{2}[B]^{-1.3}$
And the following data was collected

| $[\mathrm{A}]_{\circ}(\mathrm{M})$ | $[B]_{\mathrm{\circ}}(\mathrm{M})$ | Initial Rate $\left(\frac{\mathrm{mol}}{\mathrm{L} \cdot \mathrm{s}}\right)$ |
| :---: | :---: | :---: |
| 0.0500 | 0.100 | 6.0 |

What is k ? Remember to include units.
14) 10 pts You are given a small bar of an unknown metal $X$. You find the density of the metal to be $10.5 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$. An X-ray diffraction experiment measures the edge of face-centered cubic unit cell at $4.09 \dot{A}\left(1 \dot{A}=10^{-10} \mathrm{~m}\right)$. Identify the metal.

